
Journal of Applied Mechanics and Technical Physics, Vol. 41, No. 5, 2000 

K I N E T I C  M O D E L  OF B U B B L Y  F L O W  

V. M. Teshukov UDC 532.59.6, 517.958 

A kinetic approach based on the approximate calculation of the fluid flow potential and formu- 
lation of Hamilton's equations for generalized coordinates and momenta of bubbles is employed 
to describe processes of collective interaction of gas bubbles moving in an inviscid incompress- 
ible fluid. Kinetic equations governing the evolution of the distribution function of bubbles are 
derived. These equations are similar to Vlasov equations. 

Kinetic approaches for the description of fluid flows with gas bubbles have been developed in a number 
of recent papers [1-4]. Some of the systems of equations obtained are similar in structure to Vlasov equations 
which are used to describe plasma flows. In the derivation of these equations, Hamilton's ordinary differ- 
ential equations that describe the motion of individual particles are employed. If gas bubbles moving in an 
inviscid incompressible fluid are treated as particles, then for the derivation of the above-mentioned ordinary 
differential equations, one needs to "know the fluid flow potential in the region between the particles. For the 
simplified situation where the bubbles are considered incompressible, an approximate Hamiltonian describing 
the motion of the bubbles for a rarefied bubbly medium was obtained by Russo and Smereka [4] and used 
to derive a system of kinetic equations governing the evolution of the one-particle distribution function. The 
assumption on the incompressibility of bubbles can be used to describe real flows with bubbles of sufficiently 
small size where the surface tension, which maintains the shape of the bubbles, is considerably greater than 
the variations of the hydrodynamic pressure. This model can be used for description of concentration waves 
for small pressure differences. 

The motion of a system of compressible bubbles in a fluid is often modeled using averaged equations, 
supplemented with the Rayleigh-Lamb equation for a single bubble. Various models of this type differing 
in additional terms of equations describing real effects are discussed in [5, 6]. Certain hydrodynamic effects 
related to motion of bubbles in a fluid were considered in a monograph by Lavrent'ev and Shabat [7]. A 
kinetic approach for modeling bubbly flows in which the evolution of the bubble distribution function is 
governed by equations similar to Boltzmann equations or Vlasov equations, allows one to describe the motion 
more thoroughly and to derive average equations using a regular procedure. In particular, this approach can, 
in principle, yield certain basic relations that are postulated in a hydrodynamic description. 

In the present paper, we derive a system of kinetic equations for bubbly flow that describes the motion 
of compressible gas bubbles in an inviscid incompressible fluid. We first formulate the system of Hamilton's 
equations for generalized coordinates of spherical bubbles (spatial coordinates of the centers and radii) and 
the corresponding momenta. This system is easily written if the potential of the irrotational fluid flow in the 
region between the bubbles is known. For approximate calculation of the potential, we use an asymptotic 
expansion of the solution of the Laplace equation in the small parameter - -  the ratio of the mean radius of 
the bubbles to the mean distance between them. Lagrange equations describing the evolution of the bubble 
system follow from the law of conservation of energy. By a standard transformation, these equations are 
transformed to Hamilton's equations. We then write an equation for the N-particle distribution function, 
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average this equation over the coordinates and momenta of N - 1 particles, and thus obtain Vlasov equations 
for the one-particle distribution function. In the present paper, we obtain kinetic equations that correspond 
to the leading term in the asymptotic expansion of the fluid flow potential. Steady solutions of these equations 
are considered. 

1. I-Iamilton~s Equa t ions  for Gas Bubb le s  Moving in a F lu id .  We consider N spherical gas 
bubbles moving in an unbounded inviscid incompressible fluid. We assume that the fluid flow in the region 
between bubbles is irrotational and the velocity vector vanishes as Ix[ ---* c~. The fluid velocity potential 
~o(t, x) is a solution of the following boundary-value problem: 

A~ = O, X E ~ ~3\ U Sj; O-~n Fj = ----v.nj+sj; ~7~--~0, ix[-*oo.  (1.1) 
J 

Here vj(t) = x~(t) are the velocities of the centers of spherical bubbles, sj = b~(t) are the velocities of 
expansion of the bubbles, xj(t) are the radius-vectors of the centers, bj(t) are the radii of the bubbles 
(j -- 1 , . . . ,  N), Bj and Fj are a ball and a sphere of radius bj(t) with center at the point x ---- xj(t) ,  
respectively, and nj is the normal to Fj directed to the fluid; prime denotes derivative with respect to time. 

The unknown potential of the irrotational flow can be written as 

N 

= ~ ( v ~ r  + 8~j),  (1.2) 
j = l  

where, in view of (1.1), the harmonic functions ~2j(t, x) and ~j(t, x) satisfy the conditions 

O~bJon r~ = 5jknj, O~ojon rk = 5jk (1.3) 

and their gradients vanish at infinity (Sjk = 0 for j r k and 5jj = 1). 
Let b be the mean radius of a bubble and /~  the mean distance between bubbles. In what follows, 

we consider a rarefied bubbly fluid for which /3 = ~(~)-1 << 1. Using asymptotic expansions in a small 
parameter, we obtain approximate values of the flow potential near each bubble. 

The function qoj0 ---- -b~/rj (rj = I x - x j  [), which is harmonic outside the ball Bj, satisfies the condition 
O~oj/On = 1 on Fj and the decay condition for large [x[. In the neighborhood of the ith bubble, we have 
r~ = ~ j l n ~ ,  - ~ ; ; l ( x  - ~ , )12  = r ~ ( 1  - 2cosO~,(r,/,',~) + (~ , /~ ,~ )2 ) ,  ,.q __ I ~  - x~ l ,  n~, = (~,~ - x , ) , - ; ; L  

cos oi~ = ( x  - x ~ ) , ~ ;  -~ ,  a n d  ~ = I~' - x~l .  
Using the generating function for Legendre polynomials [8] and the representation for rj written above, 

we obtain the following series expansion of the function ~j0 

~ojo = -bj b Jrij ~= \(ri ~n ( bi / \ r q ,  (1.4) 

which is valid in the neighborhood of the ith bubble (ri/rij < 1). Equation (1.4) for ri = bi gives the expansion 
of the trace of the function ~oj0 on Fi in powers of bi/rij. We note that the quantity bi/rij is of order/3 << 1. 
In (1.4), Pn(t) is a Legendre polynomial of the nth degree. It is known that,  along with rnPn(cosO), the 
function r-(n+DPn(cosO) also satisfies the Laplace equation. We now introduce the harmonic function 

b2 ~ n / b i \ n+ l /b i \ n  
~ji = --~q ~ ~ ~ )  ~-~j) e,~(cosOji). (1.5) 

It is easy to verify that 

for ri = bi. We consider the function 
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0 
Ori (qojo + ~ji) = 0 (1.6) 

~oj = ~j0 "{- E ~ji-(2) (1.7) 
i#j 



where ~ )  is defined by formula (1.5) where the total  sum of the series is replaced by the partial sum of 

terms up to n = 2. It is easy to see that  ~ j / O n  r~ ---- ~ik + O(b/R) 4 by virtue of Eqs. (1.6), (1.7) and the 

estimates ~ji Fk -~ O(b/R)4 and ~ ' ~ j i  Fk = O(b/R)4" Here i r k. Hence, the function ~j defined by formula 

(1.7) is an approximate solution of problem (1.3) for Laplace equation. The difference of the approximate 
and the exact solutions is of order not lower than (b/R) 4. 

We consider the harmonic function ~bjo --- (b~/2)~V(r~ 1) = - (b j / r j )3 (x  - x j ) /2  which satisfies the 

boundary condition (OqOjo/On) r~ = n j  on the surface of the j t h  bubble. In the neighborhood of the i th 

bubble, @j0 admits the following approximate representation by a partial Taylor series with remainder of 
order (b/R)4: 

C j0 = ( b j / 2 ) [ ( b ~ / r ~ J ) ~ ' ~  - ( b J / r q ) ~ ( ~ / b ~ ) ( b ~ / ~ ) B ~ ( (  ~ - ~ ) ~ i - ~ ) ]  + O((b/R)~), 

where Bij = I - 3nji |  I is the unit matrix, and a | b is the diadic of two vectors. We introduce the 

harmonic function 

~bji = (bj/4)(bj/rij)2(bi/rq)(bi/ri)2Bij((x - x i)r~l) .  (1.8) 

It is easy to verify tha t  O(!bjo + ~)ji)/cOn Fi ---- 0 and to show, using this equality, that  the function 

!bj = !bj0 + E ~bji (1.9) 
i#j 

is an approximate solution of problem (1.3) and its difference from the exact solution is of order not  lower 
than (b/R) 4. 

As a result, we have obtained an approximate representation of the fluid velocity potential for specified 
velocities of motion and expansion of bubbles. This enables us to calculate the kinetic energy of the fluid: 

N N 

T = ~ ul  d ~  = - ~  ~ d r  = - ~(v~n~ + s~) dr 
"= Fi i=l  Fi 

(the normal is directed to the fluid and p is the density of the fluid). 
Using (1.2), we can write T as 

N N 
, // T = - T E E [ ( v i ,  A j i v i ) + s j d i j v i + v j c i j s i + s j e q s i ] ,  A j i =  ~pj|  

j = l  i-~l Fi 

Fi Fi Fi 

To calculate the coefficients of this quadratic form, it suffices to know the values of the potentials ~ j  and pj 

on Fi. 
Using Eqs. (1.5) and (1.7)-(1.9), we calculate the coefficients of the quadratic form T (when calculating 

the integrals over the kth  sphere in the sums in Eqs. (1.7) and (1.9), we need to consider only the terms @yk 
and ~jk since the contribution of the remaining terms is of" order higher than  ~3). As a result, we obtain the 
following expression for the kinetic energy of" the fluid: 

N 

881 



In this formula, the first sum comprises terms of zeroth order in fl and the second stun includes terms of 
orders fl, f12, and f13. A formula for the kinetic energy that takes account of terms of order not higher than 
f12 was given in [9, 10]. 

In the calculation of the total  kinetic energy of the system "fluid-gas bubbles," we do not take account 
of the kinetic energy of the gas, because the mass of the gas is small compared  to the mass of the fluid. The  
law of conservation of energy for the fluid that  occupies the region between the bubbles is written as 

dTd_._t / - - : IN/f(p = E -- P)un aT. 

Here p is the pressure in the fluid, P = const is the pressure at infinity, and u,~ = un  = O~/On (n is the 
normal directed to the fluid). 

We note that the assumption of sphericity of the bubbles used for an approximate description of the 
flow simplifies the problem substantially and makes it possible to determine the main contribution to the 
variation of the fluid flow potential  caused by oscillations of the bubble volume. In the exact formulation of 
the problem, the bubble shape must be obtained as a result of solving the problem with unknown fluid-gas 
boundary  from the condition of equality of the pressures in the gas and in the fluid on Fi. Therefore, in an 
approximate description, the formulation of the problem is modified: on the boundary we require equality 
of the pressures averaged over the surface. Let 7" be the volume of a bubble. The state of the gas inside 
a bubble will be described approximately under the assumption that  the density p and the pressure p are 
constant over the volume. Let the state  of the gas be described by the equat ion of state p = f l(P)  (isentropic 
process). The  conservation of mass for the gas in a bubble yields the relat ion pT- = P0~-0. Here P0 and P0 are 
the density and pressure of the gas at the initial t ime and v0 is the initial volume. We assume that ,  initially, 
all bubbles have the same mass m0. Then, they have equal masses at any t ime and, as was mentioned above, 
the pressure in a bubble is determined by its volume: p = f ( r )  = h(mo/~'). Using (1.2) and (1.3), we obtain 

N N 

i=1 Fi i=1 F~ Fi 

But  the integral in the first term of the fight side of this equality is zero (the total force exerted on a bubble 
is equal to zero by vir tue of the law of conservation of momentum). 

Taking into account that  the pressure depends only on the bubble volume, we can write Eq. (1.10) in 

the form 

i 1= r  i----1 i=1 ~. 

It is well known tha t  the problem of motion of a fluid with bubbles is a Lagrangian problem in the 
case where the flow of the fluid is completely determined by bubble mot ion [9]. Exactly this si tuation is 
considered in the present paper. Using the law of conservation of energy, we obtain the Lagrange equations 
for the generalized coordinates and the Corresponding velocities: 

N 
d ( o n ~  OL - 0 ,  L =  T - U ,  U =  E e(Ti). (1.11) 

Here q~ = (xi, hi) (i = 1 , . . . ,  N)  are the vectors with four components. Instead of the generalized coordinate 
bi (bubble radius), it is convenient to introduce the coordinate ai = b 2, which is proportional to bubble's 
surface area, and the velocity Ei = o'~ = 2bisi. In this case, the Lagrange equation retains the form (1.11) 

with qi = (xi, ai). 
In the present paper,  we shall consider only the leading term in the expansion of the kinetic energy 

in the parameter ft. We write the Lagrangian keeping only terms of zeroth and first order in the small 

p a r a m e t e r :  ( f i (  N EiEj  ~ N 
L -= ~ i=1 5 7rO'i [vit 1/2 2 ~ ~ 1/2 1/2 / 4  3/2"~ 

i=1 j~i riJ ] i-=-1 
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To convert to  Hamilton's equations, we introduce the Hamiltonian 

H = T + U (1.12) 

and the generalized momenta Pi and Qi: 

Pi = Ovi 3 7rp(;i vi ,  Qi = O~i ir rij 

Then, the generalized velocities vi and Ei are expressed in terms of the generalized momenta Pi and Qi and 

are substi tuted into (1.12). Since Ei = Qi/( lrpa~/2)  + O(/3), up to' terms of order f~2, we have 

7rp~r i ) -- , Ei = (Trpcrl/2) -1 Qi - c rl/2i z_., ~-" Qj " (1.13) 
Vi = Pi ~ rip i~j 

Using these formulas, we obtain the approximate expression for the Hamiltonian: 

N N N 

i=1 i=1 j# i  i=1 

In Hamiltonian form, the equations of motion for the bubbles are 

dWidt = Hp~, dpidt = - H x ~ ,  daid__.t = HQ~, dQidt = - H ~ .  (1.15) 

For N = 1 (motion of a single bubble), H = Ip[2/(p~) + Qe/(2~rpa ~/:) + e(r) and Hamilton's equations have 
the form 

da Q dQ Q2 (19 ipi2 d x  2p dP = o, - - =  - - =  (1.16) 
d-'t = p--~' d--t dt zrp~l/2' dt 4zrp(r3/2 + 2~rv'1/2 (7") - P + ~ - ~ ] .  

From the vector equations it follows that  the velocity of a bubble is given by the relations v = 2Po/(pT),  
where Po = p r o v o / 2  (To and vo are the initial values of volume and velocity). From the third equation of 
system (1.16) we express Q in terms of the bubble radius b and s: Q = 2zrpb2s, where s = b'. The last 
equation of (1.16) reduces to the Rayleigh-Lamb equation 

Iv012r~ bdS 3s 2 p ( r ) - P  + _ _  (1.17) 
dt + --2- = p 4v 2 

for a moving bubble. We note that  the order of Eq. (1.17) can be reduced because the Hamiltonian system 
aiways has the integral H = H0 = const. After certain transformations we obtain the equations 

( H 3 T ;  1/2 d x  rovo db = + 2( I'01: 0:  (1.18) 
d--/= - 7 '  d--t ~ ] ' 

which can be integrated in quadratures. The solution of Eqs. (1.18) describes periodic oscillations of a bubble 
in rectilinear motion with variable velocity. System (1.18) differs from a similar system in [11] in an additional 
term due to compressibility of the bubble. 

Generally, system (1.15) admits the following integrals (the laws of conservation of momentum, angular 
momentum, and  energy): 

N N 
Z P i = P 0 = c ~  ~ x i •  H = H 0 = c o n s t .  
i=1 i=1 

The law of conservation of momentum follows from the invariance of the Hamiltonian with respect to the 
' = zcj + a, where a is an arbitrary constant vector. The law of conservation of translation transformation x j  

angular momentum is a consequence of the invariance of the Hamiltonian with respect to the simultaneous 
rotation of a~i and Pi (i = 1 , . . . ,  N).  
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2. D e r i v a t i o n  of  Kinetic Equations. In the present paper, we consider the collisionless case 
assuming that  the bubbly medium is sufficiently rarefied, so that over the characteristic time the bub- 
bles collide with each other very rarely. The basic equation of the kinetic model is the law of conserva- 
tion of the number of particles during their motion. We now consider the N-particle distribution function 
f(N)(t,  ~gl, O'l,Pl, Q1, . . . ,  xg ,  CrY,p N, QN), which, in view of (1.15), satisfies the Liouville equation [12] 

N 

f(t N> 4- Z (divzc'(HP, f ( N ) ) - d i V P "  (Hw' f (N>)+(HQ' f (N>)a~: - (Hc ' f (H) )Q ' )  = 0  (2.1) 

and vanishes for large x~, Pk, ~k, and Qk. Equation (2.1) is an analogue of the hydrodynamic continuity 
equation for motion along the trajectories of system (1.15). The unknown function in this equation depends on 
a large number of independent variables, and construction of its solution is, in fact, equivalent to integration of 
Eqs. (1.15). Therefore, using the averaging method, we deduce simpler equations that describe the evolution 
of the one-particle distribution function defined by 

fir O'I,Pl, Q1) = fl f(N) d~l ,  f(1)(t, 
J (2.2) 

d~21 = dw2 - " " dx  N dP2 . . . dP Nda2 . . . &r N dQ2 " " dQ N. 

(2.1) by di21 and integrating over the generalized coordinates and the momenta of N - 1 Multiplying Eq. 
particles, we obtain the following equation for the function f(1): 

f::> +div ,(f Hpj(u)aax)-divp,(f 

Let us calculate the integral terms of this equation. Since Hp: = v: ,  from (1.13) and (2.1) we obtain 

f l i p : f ( N )  -- 2P: f  (1) d•l 
r ip 

Similarly, using the equality HQ: = ~1 and (1.13), we find that 

f O:f(:)  5 ~ l f O j f ( 2 ' J )  - -  ~ d~22j. (2.4) HQxf (N) d~l ---- 7rp(zrl/2 TCprlj 

Here dFt2j = d x j  dpj daj dQj, and the two-particle distribution function f(2,j) is given by the equality 

Xl , P l ,  O'1, O l ,  Xj,pj, 6rj, Oj) = J f (  N)'dl2(lJ) , f(2,J)(t, 

where d ~  j) is obtained from d~l by dropping terms that enter into d~2j. Hence, to describe the evolution 
of the one-particle distribution function, it is necessary to write the equation for the two-particle distribution 
function, etc. Therefore, additional assumptions are usually invoked to close the equations. As in [4], we use 
the hypothesis of "molecular chaos," according to which  f(2,j) __ f(:)(t,  xx,P: ,  a:, Q:) f (D( t ,  x j , p j ,  o'j, Qj). 
This allows us to express the second term on the right side of (2.4) as 

fQjf(2,j) f(1) f K: 
- Z = - 4 ( N  - 1) 

j~l  xpr:j  p J 4~r[x: -- x2[ 

where K:  (t, w2) = [ Q f(1) (t, x2, p, ~, Q) dp da dQ. We note that - (4;r[x: - x2D-1 is Green's function for 
, g  

the Laplace equation in N 3. Therefore, 

4(N 1 ) ~ ) f 0 ) ,  A r  K:. 
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Since 

similarly we obtain 

Hx, = - Q1 E QjVxl (r l j )  -1,  
~P j#l 

/ Hxlf  (N) dfh ---- 4QI(N - 1)fO)V~,/p. 

We note that Hal depends only on the coordinates and momenta of the first particle and, therefore, 

/ Ha~ f(N) d~l  = f(1). 

Substituting the expressions obtained in (2.3), we write the kinetic equation for the one-particle distribution 
function: 

f(1) + d i v x ( ~ ) - 4 ( N - 1 ) d i v p ( Q f ( 1 ) V p  r  

+ ((Q(pzro"1/2) -1 + 4(N - 1)p-l~b)f0))~ - (Ha, f(D)Q = O. 

Letting f(t, x, p, o", Q) = NfO) (t, w, p, (7, Q) and passing to the limit N -~ co, we obtain the kinetic equations 

ft + divx(Hpf) - divp(Hzf) -4- (HQf)a - (Hr = 0 (2.5) 

with the Hamiltonian 
Q2 4~Q 

H = Ip12 + - -  + + ( 2 . 6 )  
pT 2pTro.1/2 p 

Here 7- = (4/3)~o. 3/2 and the function ~, which defines the self-consistent field, satisfies the Poisson equation 

Ar = K, K = / Q f d p d a d Q .  (2.7) 

Equations (2.5)-(2.7) describe the evolution of the one-particle distribution function of compressible bubbles 
moving in an inviscid incompressible fluid. This system can be treated as a model system that takes into 
account the collective interaction of bubbles in a first approximation. To improve the accuracy of approxi- 
mation, it is necessary to consider the next terms in the asymptotic expansion of the kinetic energy of the 
fluid. 

Because Eqs. (1.15) admitted integrals, Eqs. (2.5)-(2.7) obey the hydrodynamic conservation laws 

( 2 . s )  

( f p f  dpdQ do.)t + d i v x ( / ( p |  Hp)f dpdQ do" + 4p-lV~p | V~b- 2p-I[vv]2I)  = 0, 

( / H f  dpdQ do" + 2p-1]V~PI2)t + d ivx (  f HHpf dpdO do-- 4p-l~ptV~b) = 0. 

Here the divergence of the tensor T is defined as follows: d i r T - a  = div(T*(a)), where a is an arbitrary 
vector and T* is the adjoint mapping [13]. A consequence of Eqs. (2.8) is the law of conservation of angular 
momentum: 

( / ( w •  dpdQdo")t+divx ( / ( ( x •174  dpdOdo" +4p-1 (X x \7~,) | ~7~.')- 2p-lrot (x]~'~bl 2) ----0. 

;the conservation laws (2.8) can be employed to derive the equations in a hydrodynamic approximation. 
As an additional law, we can take the following inhomogeneons conservation law: 
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3. S t e a d y  Solut ions .  It is easy to see that if f does not depend on t, the equality f = ~(H) specifies 
an exact solution of Eq. (2.5). And for the function ~b, we obtain the equation 

A r  = L(r L(~;) = / Qf(H) dp d~r dQ. 

In the one-dimensional case where Czx = L(r this equation can be integrated once: r -- X(~), where 

X(~b) ----/L(r d~b, and reduced to quadratures. By giving concrete expressions for the function f (H),  it is 

possible to obtain various solutions including periodic waves. 
This work was supported by the Russian Foundation for Fundamental Research (Grant No. 98-01- 
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